3.1.40 \(\int \frac {1}{(3-5 \sin (c+d x))^3} \, dx\) [40]

3.1.40.1 Optimal result
3.1.40.2 Mathematica [A] (verified)
3.1.40.3 Rubi [A] (verified)
3.1.40.4 Maple [A] (verified)
3.1.40.5 Fricas [A] (verification not implemented)
3.1.40.6 Sympy [B] (verification not implemented)
3.1.40.7 Maxima [A] (verification not implemented)
3.1.40.8 Giac [A] (verification not implemented)
3.1.40.9 Mupad [B] (verification not implemented)

3.1.40.1 Optimal result

Integrand size = 12, antiderivative size = 115 \[ \int \frac {1}{(3-5 \sin (c+d x))^3} \, dx=-\frac {43 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-3 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{2048 d}+\frac {43 \log \left (3 \cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}{2048 d}+\frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}-\frac {45 \cos (c+d x)}{512 d (3-5 \sin (c+d x))} \]

output
-43/2048*ln(cos(1/2*d*x+1/2*c)-3*sin(1/2*d*x+1/2*c))/d+43/2048*ln(3*cos(1/ 
2*d*x+1/2*c)-sin(1/2*d*x+1/2*c))/d+5/32*cos(d*x+c)/d/(3-5*sin(d*x+c))^2-45 
/512*cos(d*x+c)/d/(3-5*sin(d*x+c))
 
3.1.40.2 Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.60 \[ \int \frac {1}{(3-5 \sin (c+d x))^3} \, dx=\frac {-43 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-3 \sin \left (\frac {1}{2} (c+d x)\right )\right )+43 \log \left (3 \cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {40}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-3 \sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\left (-\frac {180}{\cos \left (\frac {1}{2} (c+d x)\right )-3 \sin \left (\frac {1}{2} (c+d x)\right )}-\frac {60}{3 \cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}\right ) \sin \left (\frac {1}{2} (c+d x)\right )-\frac {40}{\left (-3 \cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}}{2048 d} \]

input
Integrate[(3 - 5*Sin[c + d*x])^(-3),x]
 
output
(-43*Log[Cos[(c + d*x)/2] - 3*Sin[(c + d*x)/2]] + 43*Log[3*Cos[(c + d*x)/2 
] - Sin[(c + d*x)/2]] + 40/(Cos[(c + d*x)/2] - 3*Sin[(c + d*x)/2])^2 + (-1 
80/(Cos[(c + d*x)/2] - 3*Sin[(c + d*x)/2]) - 60/(3*Cos[(c + d*x)/2] - Sin[ 
(c + d*x)/2]))*Sin[(c + d*x)/2] - 40/(-3*Cos[(c + d*x)/2] + Sin[(c + d*x)/ 
2])^2)/(2048*d)
 
3.1.40.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.89, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.833, Rules used = {3042, 3143, 25, 3042, 3233, 27, 3042, 3139, 1081, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(3-5 \sin (c+d x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(3-5 \sin (c+d x))^3}dx\)

\(\Big \downarrow \) 3143

\(\displaystyle \frac {1}{32} \int -\frac {5 \sin (c+d x)+6}{(3-5 \sin (c+d x))^2}dx+\frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}-\frac {1}{32} \int \frac {5 \sin (c+d x)+6}{(3-5 \sin (c+d x))^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}-\frac {1}{32} \int \frac {5 \sin (c+d x)+6}{(3-5 \sin (c+d x))^2}dx\)

\(\Big \downarrow \) 3233

\(\displaystyle \frac {1}{32} \left (-\frac {1}{16} \int -\frac {43}{3-5 \sin (c+d x)}dx-\frac {45 \cos (c+d x)}{16 d (3-5 \sin (c+d x))}\right )+\frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{32} \left (\frac {43}{16} \int \frac {1}{3-5 \sin (c+d x)}dx-\frac {45 \cos (c+d x)}{16 d (3-5 \sin (c+d x))}\right )+\frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{32} \left (\frac {43}{16} \int \frac {1}{3-5 \sin (c+d x)}dx-\frac {45 \cos (c+d x)}{16 d (3-5 \sin (c+d x))}\right )+\frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}\)

\(\Big \downarrow \) 3139

\(\displaystyle \frac {1}{32} \left (\frac {43 \int \frac {1}{3 \tan ^2\left (\frac {1}{2} (c+d x)\right )-10 \tan \left (\frac {1}{2} (c+d x)\right )+3}d\tan \left (\frac {1}{2} (c+d x)\right )}{8 d}-\frac {45 \cos (c+d x)}{16 d (3-5 \sin (c+d x))}\right )+\frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}\)

\(\Big \downarrow \) 1081

\(\displaystyle \frac {1}{32} \left (\frac {129 \int \left (\frac {1}{8 \left (1-3 \tan \left (\frac {1}{2} (c+d x)\right )\right )}-\frac {1}{24 \left (3-\tan \left (\frac {1}{2} (c+d x)\right )\right )}\right )d\tan \left (\frac {1}{2} (c+d x)\right )}{8 d}-\frac {45 \cos (c+d x)}{16 d (3-5 \sin (c+d x))}\right )+\frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {5 \cos (c+d x)}{32 d (3-5 \sin (c+d x))^2}+\frac {1}{32} \left (\frac {129 \left (\frac {1}{24} \log \left (3-\tan \left (\frac {1}{2} (c+d x)\right )\right )-\frac {1}{24} \log \left (1-3 \tan \left (\frac {1}{2} (c+d x)\right )\right )\right )}{8 d}-\frac {45 \cos (c+d x)}{16 d (3-5 \sin (c+d x))}\right )\)

input
Int[(3 - 5*Sin[c + d*x])^(-3),x]
 
output
((129*(-1/24*Log[1 - 3*Tan[(c + d*x)/2]] + Log[3 - Tan[(c + d*x)/2]]/24))/ 
(8*d) - (45*Cos[c + d*x])/(16*d*(3 - 5*Sin[c + d*x])))/32 + (5*Cos[c + d*x 
])/(32*d*(3 - 5*Sin[c + d*x])^2)
 

3.1.40.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1081
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = Rt[b^2 
- 4*a*c, 2]}, Simp[c   Int[ExpandIntegrand[1/((b/2 - q/2 + c*x)*(b/2 + q/2 
+ c*x)), x], x], x]] /; FreeQ[{a, b, c}, x] && NiceSqrtQ[b^2 - 4*a*c]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3143
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos 
[c + d*x]*((a + b*Sin[c + d*x])^(n + 1)/(d*(n + 1)*(a^2 - b^2))), x] + Simp 
[1/((n + 1)*(a^2 - b^2))   Int[(a + b*Sin[c + d*x])^(n + 1)*Simp[a*(n + 1) 
- b*(n + 2)*Sin[c + d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3233
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + 
 f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*( 
m + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c 
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
 
3.1.40.4 Maple [A] (verified)

Time = 0.27 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.87

method result size
derivativedivides \(\frac {-\frac {25}{128 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3\right )^{2}}-\frac {15}{512 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3\right )}+\frac {43 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3\right )}{2048}+\frac {25}{1152 \left (3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {155}{4608 \left (3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {43 \ln \left (3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2048}}{d}\) \(100\)
default \(\frac {-\frac {25}{128 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3\right )^{2}}-\frac {15}{512 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3\right )}+\frac {43 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3\right )}{2048}+\frac {25}{1152 \left (3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {155}{4608 \left (3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {43 \ln \left (3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2048}}{d}\) \(100\)
risch \(-\frac {-387 i {\mathrm e}^{2 i \left (d x +c \right )}+215 \,{\mathrm e}^{3 i \left (d x +c \right )}-325 \,{\mathrm e}^{i \left (d x +c \right )}+225 i}{256 \left (5 \,{\mathrm e}^{2 i \left (d x +c \right )}-5-6 i {\mathrm e}^{i \left (d x +c \right )}\right )^{2} d}+\frac {43 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {4}{5}-\frac {3 i}{5}\right )}{2048 d}-\frac {43 \ln \left (-\frac {4}{5}-\frac {3 i}{5}+{\mathrm e}^{i \left (d x +c \right )}\right )}{2048 d}\) \(109\)
norman \(\frac {-\frac {55}{256 d}-\frac {3245 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2304 d}+\frac {1225 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{768 d}-\frac {125 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{768 d}}{{\left (3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-10 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+3\right )}^{2}}+\frac {43 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3\right )}{2048 d}-\frac {43 \ln \left (3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2048 d}\) \(119\)
parallelrisch \(\frac {\left (-9675 \cos \left (2 d x +2 c \right )-23220 \sin \left (d x +c \right )+16641\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{3}\right )+\left (9675 \cos \left (2 d x +2 c \right )+23220 \sin \left (d x +c \right )-16641\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3\right )+3960 \cos \left (d x +c \right )-5500 \cos \left (2 d x +2 c \right )-13200 \sin \left (d x +c \right )-8100 \sin \left (2 d x +2 c \right )+9460}{18432 d \left (-43+25 \cos \left (2 d x +2 c \right )+60 \sin \left (d x +c \right )\right )}\) \(137\)

input
int(1/(3-5*sin(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
1/d*(-25/128/(tan(1/2*d*x+1/2*c)-3)^2-15/512/(tan(1/2*d*x+1/2*c)-3)+43/204 
8*ln(tan(1/2*d*x+1/2*c)-3)+25/1152/(3*tan(1/2*d*x+1/2*c)-1)^2+155/4608/(3* 
tan(1/2*d*x+1/2*c)-1)-43/2048*ln(3*tan(1/2*d*x+1/2*c)-1))
 
3.1.40.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.16 \[ \int \frac {1}{(3-5 \sin (c+d x))^3} \, dx=\frac {43 \, {\left (25 \, \cos \left (d x + c\right )^{2} + 30 \, \sin \left (d x + c\right ) - 34\right )} \log \left (4 \, \cos \left (d x + c\right ) - 3 \, \sin \left (d x + c\right ) + 5\right ) - 43 \, {\left (25 \, \cos \left (d x + c\right )^{2} + 30 \, \sin \left (d x + c\right ) - 34\right )} \log \left (-4 \, \cos \left (d x + c\right ) - 3 \, \sin \left (d x + c\right ) + 5\right ) - 1800 \, \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 440 \, \cos \left (d x + c\right )}{4096 \, {\left (25 \, d \cos \left (d x + c\right )^{2} + 30 \, d \sin \left (d x + c\right ) - 34 \, d\right )}} \]

input
integrate(1/(3-5*sin(d*x+c))^3,x, algorithm="fricas")
 
output
1/4096*(43*(25*cos(d*x + c)^2 + 30*sin(d*x + c) - 34)*log(4*cos(d*x + c) - 
 3*sin(d*x + c) + 5) - 43*(25*cos(d*x + c)^2 + 30*sin(d*x + c) - 34)*log(- 
4*cos(d*x + c) - 3*sin(d*x + c) + 5) - 1800*cos(d*x + c)*sin(d*x + c) + 44 
0*cos(d*x + c))/(25*d*cos(d*x + c)^2 + 30*d*sin(d*x + c) - 34*d)
 
3.1.40.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1224 vs. \(2 (102) = 204\).

Time = 1.43 (sec) , antiderivative size = 1224, normalized size of antiderivative = 10.64 \[ \int \frac {1}{(3-5 \sin (c+d x))^3} \, dx=\text {Too large to display} \]

input
integrate(1/(3-5*sin(d*x+c))**3,x)
 
output
Piecewise((x/(3 - 5*sin(2*atan(1/3)))**3, Eq(c, -d*x + 2*atan(1/3))), (x/( 
3 - 5*sin(2*atan(3)))**3, Eq(c, -d*x + 2*atan(3))), (x/(3 - 5*sin(c))**3, 
Eq(d, 0)), (3483*log(tan(c/2 + d*x/2) - 3)*tan(c/2 + d*x/2)**4/(165888*d*t 
an(c/2 + d*x/2)**4 - 1105920*d*tan(c/2 + d*x/2)**3 + 2174976*d*tan(c/2 + d 
*x/2)**2 - 1105920*d*tan(c/2 + d*x/2) + 165888*d) - 23220*log(tan(c/2 + d* 
x/2) - 3)*tan(c/2 + d*x/2)**3/(165888*d*tan(c/2 + d*x/2)**4 - 1105920*d*ta 
n(c/2 + d*x/2)**3 + 2174976*d*tan(c/2 + d*x/2)**2 - 1105920*d*tan(c/2 + d* 
x/2) + 165888*d) + 45666*log(tan(c/2 + d*x/2) - 3)*tan(c/2 + d*x/2)**2/(16 
5888*d*tan(c/2 + d*x/2)**4 - 1105920*d*tan(c/2 + d*x/2)**3 + 2174976*d*tan 
(c/2 + d*x/2)**2 - 1105920*d*tan(c/2 + d*x/2) + 165888*d) - 23220*log(tan( 
c/2 + d*x/2) - 3)*tan(c/2 + d*x/2)/(165888*d*tan(c/2 + d*x/2)**4 - 1105920 
*d*tan(c/2 + d*x/2)**3 + 2174976*d*tan(c/2 + d*x/2)**2 - 1105920*d*tan(c/2 
 + d*x/2) + 165888*d) + 3483*log(tan(c/2 + d*x/2) - 3)/(165888*d*tan(c/2 + 
 d*x/2)**4 - 1105920*d*tan(c/2 + d*x/2)**3 + 2174976*d*tan(c/2 + d*x/2)**2 
 - 1105920*d*tan(c/2 + d*x/2) + 165888*d) - 3483*log(3*tan(c/2 + d*x/2) - 
1)*tan(c/2 + d*x/2)**4/(165888*d*tan(c/2 + d*x/2)**4 - 1105920*d*tan(c/2 + 
 d*x/2)**3 + 2174976*d*tan(c/2 + d*x/2)**2 - 1105920*d*tan(c/2 + d*x/2) + 
165888*d) + 23220*log(3*tan(c/2 + d*x/2) - 1)*tan(c/2 + d*x/2)**3/(165888* 
d*tan(c/2 + d*x/2)**4 - 1105920*d*tan(c/2 + d*x/2)**3 + 2174976*d*tan(c/2 
+ d*x/2)**2 - 1105920*d*tan(c/2 + d*x/2) + 165888*d) - 45666*log(3*tan(...
 
3.1.40.7 Maxima [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.70 \[ \int \frac {1}{(3-5 \sin (c+d x))^3} \, dx=-\frac {\frac {40 \, {\left (\frac {735 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {649 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {75 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - 99\right )}}{\frac {60 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {118 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {60 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {9 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - 9} + 387 \, \log \left (\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right ) - 387 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 3\right )}{18432 \, d} \]

input
integrate(1/(3-5*sin(d*x+c))^3,x, algorithm="maxima")
 
output
-1/18432*(40*(735*sin(d*x + c)/(cos(d*x + c) + 1) - 649*sin(d*x + c)^2/(co 
s(d*x + c) + 1)^2 - 75*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 99)/(60*sin(d 
*x + c)/(cos(d*x + c) + 1) - 118*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 60* 
sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 9*sin(d*x + c)^4/(cos(d*x + c) + 1)^ 
4 - 9) + 387*log(3*sin(d*x + c)/(cos(d*x + c) + 1) - 1) - 387*log(sin(d*x 
+ c)/(cos(d*x + c) + 1) - 3))/d
 
3.1.40.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.93 \[ \int \frac {1}{(3-5 \sin (c+d x))^3} \, dx=-\frac {\frac {40 \, {\left (75 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 649 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 735 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 99\right )}}{{\left (3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 10 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3\right )}^{2}} + 387 \, \log \left ({\left | 3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - 387 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \right |}\right )}{18432 \, d} \]

input
integrate(1/(3-5*sin(d*x+c))^3,x, algorithm="giac")
 
output
-1/18432*(40*(75*tan(1/2*d*x + 1/2*c)^3 + 649*tan(1/2*d*x + 1/2*c)^2 - 735 
*tan(1/2*d*x + 1/2*c) + 99)/(3*tan(1/2*d*x + 1/2*c)^2 - 10*tan(1/2*d*x + 1 
/2*c) + 3)^2 + 387*log(abs(3*tan(1/2*d*x + 1/2*c) - 1)) - 387*log(abs(tan( 
1/2*d*x + 1/2*c) - 3)))/d
 
3.1.40.9 Mupad [B] (verification not implemented)

Time = 7.68 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.01 \[ \int \frac {1}{(3-5 \sin (c+d x))^3} \, dx=-\frac {43\,\mathrm {atanh}\left (\frac {3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}-\frac {5}{4}\right )}{1024\,d}-\frac {\frac {125\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{6912}+\frac {3245\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{20736}-\frac {1225\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{6912}+\frac {55}{2304}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-\frac {20\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+\frac {118\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{9}-\frac {20\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}+1\right )} \]

input
int(-1/(5*sin(c + d*x) - 3)^3,x)
 
output
- (43*atanh((3*tan(c/2 + (d*x)/2))/4 - 5/4))/(1024*d) - ((3245*tan(c/2 + ( 
d*x)/2)^2)/20736 - (1225*tan(c/2 + (d*x)/2))/6912 + (125*tan(c/2 + (d*x)/2 
)^3)/6912 + 55/2304)/(d*((118*tan(c/2 + (d*x)/2)^2)/9 - (20*tan(c/2 + (d*x 
)/2))/3 - (20*tan(c/2 + (d*x)/2)^3)/3 + tan(c/2 + (d*x)/2)^4 + 1))